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Abstract

Autonomous Driving Application can be divided into three phases,
Recognition, Prediction, and Planning respectively. At the Recogni-
tion phase, an autonomous driver must be able to recognize objects
around it. Prediction aims to predict object movements, such as ped-
estrian motion prediction. Finally, the autonomous driver must make
a decision accordingly. In this project, we are going to focus on ped-
estrians motion prediction using LSTM architecture. The main idea
is using FPGA (Field Programmable Gate Array) as a hardware plat-
form to test the model in less amount of time significantly. Actually,
we are facing with a real-time application where testing time is a crit-
ical issue. We introduce FPGA as the hardware platform to reduce
time and power exponentially in the autonomous driving application.
The results demonstrate the capability of FPGAs in comparison to
other hardware platforms like GPUs or CPUs.
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1 Introduction

Nowadays, a lot of attempts has done to build things autonomous. Autonomy,
is the final goal for a lot of industries making intelligent devices. Perhaps
the most popular examples of such a notion are autonomous robots [1] doing
things autonomously. A good example of such robots are vacuum cleaners
all of us have in our home. However, autonomous vacuum cleaners do exist
everywhere but they are not the most important application of autonomy.
One of the industries that mostly benefits from autonomy is vehicle industry.
There exist numerous companies trying to build autonomous vehicles such as
helicopters [2], airplanes [3] and cars [4], [5]. There exist a lot of large scale
companies working on autonomous vehicles like Bosch car multimedia [6],
BMW [7], Ford [8], Google [9], Volkswagen [10] etc. However, most of these
companies has a patent car that can drive autonomously, but still you do
not see such cars in roads. Thats because autonomous cars are very critical
vehicles and must not have any errors. Having a bug can easily result in
fatality.

Artificial intelligence (referred to as AI) in general and specifically ma-
chine learning (referred to as ML) are key factors to incorporate autonomy
into vehicles. There has been a lot of attempts to build self driving cars in
past decades using machine learning methods. AI and ML methods are used
in two parts of the autonomous car [4]. First, they are used to interpret the
captured data from sensors like cameras, laser, etc. to understand the scene
objects. Second, they are utilized to make decisions based on the interpreted
scene to control the steering wheel, break and throttle. In this research pro-
ject we are going to work on the first part. We believe that this part plays
very important role in this area because the better the agent can interpret
and understand the scene object, the better decision will be made and thus,
the more reliable the agent can be.

Problem Statement In order to train the AI agent, the agent needs
input to make a decision and the input is nothing else but data captured
by sensors. There are many scenarios where the agent has to make decision
in, such as staying in the path and following traffic signs. Most of them are
likely to be constant and do not vary a lot. We are interested in such sudden
scenarios where the agent has to make decision immediately, for example
pedestrians, cyclists and other moving objects crossing the street or moving
in front of the car. In order to make decision based on these scenarios, the
agent has to have some intuitions of predicting what the objects will do in
near future. The problem is the agent has only stream of images as the input
and has to predict a movement based only on images. There has been some
researches in this motion detection area. We want to apply this idea and
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focus on the driving scenarios.
In driving scenarios, every second matters a lot and the scene can be

drastically changed within seconds. Therefore, we are trying to accelerate
the time for agent to interpret the scenes such that the model can be used
in real time. In this project we focus only on pedestrians motion prediction
which will be trained and implement on FPGA to be tested in less amount of
time significantly. Actually we are facing with a real time application which
time matters a lot especially in inference. So we introduce FPGA (Field
Programmable Gate Array) as the hardware platform to reduce especially
time and power in autonomous driving application.

2 Related Work

Autonomous Driving Application can be divided into three phases, Recog-
nition, Prediction and Planning respectively. Recognition is the first phase,
actually autonomous driver must recognize objects around such as pedestrian
recognition. Prediction aims predict object movements, such as pedestrian
motion prediction. Finally, autonomous driver must make a plan which is
the last phase. Autonomous driving applications have wide range of aspect
regarding the objects or roads, in this project we are going to focus only
on pedestrians motion prediction which will be trained and implemented on
FPGA to be tested in less amount of time significantly. Actually we are
facing with a real time application where time matters a lot especially in
inference. We introduce FPGA (Field Programmable Gate Array) as hard-
ware platform to reduce especially time and power in autonomous driving
application. FPGAs are quite well known in embedded system industry used
in real autonomous driver cause actually we will end up with hardware in
real application.

Seeing the rise of Autonomous Driving application, there has been com-
petitions between hardwares such as FPGA and GPU to offer a hardware
platform that can reduce the computation time significantly and efficiently.
As Deep Learning has driven most of the advanced autonomous driving ap-
plications, it is regarded as the main comparison point[5].

Even though GPU vendors have aggressively positioned their hardware
as the most efficient platform for this new era, FPGAs have shown a great
improvement in both power consumption and performance in Deep Neural
Networks (DNNs) applications, which offer high accuracies for important
image classification tasks and are therefore becoming widely adopted [11]. As
there are various trade-off to consider, we bring some benefits and barriers
of using FPGAs and GPU, and consider the studies performed by the main
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players in this field; namely Xilinx, Intel, Microsoft and UCLA research labs.
DNNs are widely used as learning models because of their inference ac-

curacies. They can be formulated as graphs similar to the one shown in
Figure 1.

Figure 1: Deep Neural Network structure overview
source: https://www.aldec.com/en/company/blog/

167--fpgas-vs-gpus-for-machine-learning-applications-which-one-is-better

The differences between FPGA and GPU can be classified into four main
categories of hardware : Raw compute power, Efficiency and power, Flex-
ibility and ease of use, and Functional Safety. There were many researches
published by Xilinx [11], Intel [12], Microsoft [13] and UCLA [14] and the
below content is derived from that source.[15]

1. Raw Compute Power: The researches done on Xilinx signifies that
the Tesla P40 with Ultrascale+TM XCVU13P FPGA has almost the
same compute power (40 INT8 TOP/s) and (38.3 INT8 TOP/s) re-
spectively. FPGAs perform significantly higher in compute capability,
when it comes to on-chip memory, which contributes in reducing the
latency in deep learning applications and also high amount of on-chip
cache memory used reduces the memory bottlenecks which is associated
with external memory access. It also reduces the power and costs of a
high memory bandwidth solution. In the application of Deep Neural
Network the FPGAs support the full range of data types precisions,
e.g., INT8, FTP32, binary and any other custom data type. Since the
deep learning applications are evolving at a faster rate to catch up with
this demand, GPU vendors must upgrade the existing architectures to

3

https://www.aldec.com/en/company/blog/167--fpgas-vs-gpus-for-machine-learning-applications-which-one-is-better
https://www.aldec.com/en/company/blog/167--fpgas-vs-gpus-for-machine-learning-applications-which-one-is-better


stay up-to-date. Therefore, the FPGAs come in handy because of its
re-configurability and hence users can implement any custom data type
into their design.[15]

2. Efficiency and Power: FPGAs are popular mainly because of their
power efficiency. Several research project were done to test the per-
formance of these hardware. Microsoft on an image classification pro-
ject showed that Arria 10 FPGA performs almost 10 times better in
power consumption. On the other research in general purpose compute
efficiency by Xilinx, they claim that the Xilinx Virtex Ultrascale+ res-
ults almost four times better than NVidia Tesla V100. The research
concludes that although the NVidia V100 provides a significant effi-
ciency to the Xilinx FPGAs due to the efficient Tensor Cores for tensor
operations for recent deep learning workloads, it is unpredictable for
longitivity of NVidia’s Tensor Cores remaining efficient for deep learn-
ing applications. For a huge number of end applications and its work-
loads the re-configurability of FPGAs provides much higher efficiency
in addition to the software development stack of main vendors such as
Xilinx (SDAccel) and Intel (FPGA SDK for OpenCL).[15]

3. Flexibility and Ease-of-Use: FPGAs can be programmed to add
different steps or outputs altogether, allowing growth beyond existing
GPU support without physically changing the way the GPUs are ar-
chitected.[16] Given the existing system that has been running for a
while and we want to add some new steps to the running program.
If we use FPGA, we can reprogram it to insert the new steps easily,
but if we run the program on GPU, we need some additional GPUs as
well as programming to adjust the new steps to the existing program.
The flexible architecture of FPGAs has shown great potential in sparse
networks, which is one of the hot trends in current machine learning
applications.[15] Another reason why FPGA is flexible is the compat-
ibility for any-to-any I/O connection. In the aspect of easiness, GPUs
are easier to use than the FPGA. However, there is an easy develop-
ment platform for the users called Xilinx which provides tools such as
SDoC, SDAccel and Vivado HLS. These tools have made the designing
process of FPGA much easier for software engineers, as they can easily
convert their C/C++ code to the HDL.[15]

4. Functional Safety: GPUs are originally designed for consumer graph-
ics such as rendering high quality images for display, especially for gam-
ing. In that particular case, functional safety is not a necessity because
GPU only deals with the visual effect and nothing to be concerned as
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harmful. On the other hand, the applications such as ADAS (Advanced
Driver-Assistance Systems) requires functional safety because it is in-
volving human being. Therefore, GPU itself is not really applicable for
this field due to its unreliability. The hardware proposed in this pro-
ject, which is FPGA, have been used for some applications requiring
functional safety such as ADAS, medical devices and aerospace con-
trols.[16] FPGAs have been designed in way to meet the safety require-
ment of wide range of applications including ADAS. In this respect,
Xilinx Zynq R©-7000 and Ultrascale+TM MPSoC devices are designed
to support safety-critical applications such as ADAS.[15]

There are some researches conducted for accelerating the computation of
the deep learning network. In [17], the authors worked on LSTM-RNNs for
real-life speech recognition problem. They believe that the combination of
LSTM and RNNs improves the prediction accuracy but the computation pat-
tern and data access pattern more complex. Therefore, it is quite difficult for
CPUs to accomplish remarkable performance on real-life problem where we
need to infere the speech as quickly and precisely as possible. It means that
a high-performance accelerator is hardly required. One of the alternatives
goes to FPGA-based accelerator, if taking performance, energy-efficiency and
flexibility into consideration. The authors focus on accelerating the on-line
inference time of LSTM-RNNs and the result is FPGA-based accelerator for
LSTM-RNNs that optimizes both computation performance and communic-
ation requirements outperforms previous approaches[18].

In this project, we implement a LSTM on FPGA and test the model and
measure the time and power consumption then compare it to state of the art.
We will see that FPGAs are capable to beat GPUs regarding the time and
power. There has been successful researches in motion detection area. They
employed Deep Learning architecture using Convolutional Neural Network
(CNN) because CNN is well-known for its capability of dealing with images.
In this project, we are going to employ Recurrent Neural Network (RNN)
which is known for its capability to work with time series data. We use
RNN because we are dealing with sequence of data that is correlated within
its sequence. The movement of an object at current time is affected by the
previous movement and so is the next movement. In addition, we are also
using Long Short-term Memory (LSTM). LSTM networks are well-suited
to classifying, processing and making predictions based on time series data,
since there can be lags of unknown duration between important events in a
time series. LSTMs were developed to deal with the exploding and vanishing
gradient problems that can be encountered when training traditional RNNs.
LSTMs help to retain history for short time which is helpful to train the
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model better. After training the model, we transfer that model to a hardware
called FPGA for testing.

3 Methodology

There has been successful researches in motion detection area using CNN and
RNN. In this project, we employ Recurrent Neural Network (RNN) which
is known for its capability to work with time series data. It also deals with
sequence of data that is correlated within its sequence. In addition, we also
use Long Short-term Memory (LSTM).

Recurrent Neural Networks Recurrent Neural Networks (RNNs) are one
type of neural networks that are capable of handling sequence data, such as
sequence of words in sentences and series of observations over time. RNNs
have shown some great successful applications, for example language pro-
cessing, video processing, time-series prediction and human activity recogni-
tion. In general neural network, the inputs and the outputs are independent
of each other. This may be inappropriate approach for dealing with sequential
data, where the current output in sequential data is affected by the previous
output along with current input to some extent. That is exactly how RNNs
actually work. RNNs process the input sequentially. After getting the output
for each timestamp, RNNs retain the output and pass it to the next input.

Figure 2: LSTM cell and the unfolded LSTM cell
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Although RNNs are able to process data sequentially, they are limited to
looking back only few steps. For example in word prediction, I am from Ger-
many and I speak . The blank space would be filled by a word ”German”
but the RNNs find it difficult to predict it because the important inform-
ation, which is Germany, lies few words before the blank space. The word
”Germany” does not give much information compared to the word ”speak”
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right before the blank space. This is the problem of long-term dependencies.
Hence, LSTM comes to overcome this problem.

Figure 3: LSTM long-term dependencies problem
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Long Short-Term Memory (LSTM)
was first developed by Hochreiter Schmidhuber (1997) as a variant of Re-
current Neural Network (RNN). LSTM is a type of RNNs with capability of
handling Long-Term dependencies. All recurrent neural networks have the
form of a chain of repeating modules of neural network. In standard RNNs,
this repeating module will have a very simple structure [19]

Figure 4: The repeating module in a standard RNN contains a single layer
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs also have this chain like structure, but the repeating module has
a different structure.[19] There are four different networks, which are called
gates, interacting in a special way to process the input.
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Figure 5: The repeating module in an LSTM contains four interacting layers
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

A LSTM cell consists of 4 gates :

Figure 6: LSTM Forget Gate
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

1. Forget Gate Forget gate helps the network to decide which informa-
tion from previous step to be kept and deleted. This gate has its own
parameters, which are weights Wf. This weights act as a switch to filter
any undesired previous information. Formally, input and output from
previous step are multiplied by the weights Wf, then the results are
passed into the activation gate with sigmoid function.
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Figure 7: LSTM Candidate Memory
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

2. Candidate memory Candidate memory C̃t decides what information
could be proposed as the memory cell ct. Memory cell is the cell that
brings the information throughout the process. For every step, it con-
tains different information depending on the input obtained from the
surrounding gates. This gate processes the input and the output from
previous step by multiplying with its own weights Whc.

Figure 8: LSTM Input Gate
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

3. Input Gate Input gate decides which information could be added to
the candidate memory. The output from input gate together with the
candidate memory are processed by element-wise product. The results
are then processed with the output from forget gate to determine the
current memory cell Ct.
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Figure 9: LSTM Output Gate
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

4. Output Gate Output gate decides what information are going to the
output ot. The memory cell Ct goes to tanh function and then together
with the output ot are processed with element-wise product to yield
the actual output ht. This output is then sent to the next cell as the
short-term memory.

LSTM Formula

ft = σ(Whf.ht-1 + Wxf.xt + bf) (1)

it = σ(Whi.ht-1 + Wxi.xt + bi) (2)

C’t = tanh(WhC.ht-1 + WxC.xt + bC) (3)

ot = σ(Who.ht-1 + Wxo.xt + bo) (4)

Ct = ft ∗ Ct-1 + it ∗ C’t (5)

ht = ot ∗ tanh(Ct) (6)
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Figure 10: LSTM Network

Problem Setting In the problem setting, we consider a walking pedestrian
as a sequence of frames where each frame represents the position of a leg
in walk cycle. In the above figure we can observe the repeating sequence of
a person after every 25 to 30 frame cycle. Then the problem filters down
to just predicting the next frame(movement) given the sequence of previous
movements. Therefore we implemented LSTM with 1 and 2 units.

Figure 11: Walking Cycle
source: https://www.schoolofmotion.com/blog/walk-cycle-inspiration
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Figure 12: Walking Cycle 2
source: https://www.researchgate.net/figure/

Examples-of-2D-pose-estimation-by-skeleton-fitting-Top-pedestrian-in-side-view-walking_

fig2_326681295

After that, we implement a LSTM on FPGA and test the model and
measure the time and power consumption then compare it to state of the
art. We see that FPGAs are capable to beat GPUs regarding the time and
power.

4 Experiments

In this experiment, we use dataset from TUD crossing tracking. This dataset
contains videos of different people crossing a street that have been put into
sequence of frames. There are 52 different samples being used to learn the
model.

Preprocessing In the preprocessing step, we assign the label to each frame
according to our key label set given in figure 11.

Figure 13: TUD Crossing Tracking
source: http://www.vision.ee.ethz.ch/~rhayko/paper/eccv2012_

riemenschneider_hough_region

After that, we enlarge our dataset by building the augmented dataset.
Given the full sequence of frames for each person. We build a dataset by

12

https://www.researchgate.net/figure/Examples-of-2D-pose-estimation-by-skeleton-fitting-Top-pedestrian-in-side-view-walking_fig2_326681295
https://www.researchgate.net/figure/Examples-of-2D-pose-estimation-by-skeleton-fitting-Top-pedestrian-in-side-view-walking_fig2_326681295
https://www.researchgate.net/figure/Examples-of-2D-pose-estimation-by-skeleton-fitting-Top-pedestrian-in-side-view-walking_fig2_326681295
http://www.vision.ee.ethz.ch/~rhayko/paper/eccv2012_riemenschneider_hough_region
http://www.vision.ee.ethz.ch/~rhayko/paper/eccv2012_riemenschneider_hough_region


clipping the sequence every 8 frames then set the next frame to be the out-
put. Supposed we have the sequence with label 1,2,3,4,5,6,7,8,9 and 10 , we
can build a dataset as follows:

Input Output
1,2,3,4,5,6,7,8 9
2,3,4,5,6,7,8,9 10

At the end, we can have 592 instances to build the model. We split the
dataset into training and testing dataset. The training dataset has 396 in-
stances and testing dataset has 196 instances.

Learning the model In the learning process, we use supervised learning as
we have the ground truth for each instance. We feed n(n=8) many sequences
of frames into the LSTM, then output the next predicted frame given the in-
put. According to the Figure 2, we can see those moments such as contacting
with the ground, knees going down, passing position, and knees going up.
The input for the LSTM are just sequences of the label but we normalize
the label to be between 0 and 1 such that it has even distribution. For the
output label, we use one-hot encoding with 30 labels, where each label has
30 columns. The label’s column is set to be one and the rest of columns is 0.
In this experiment, we also compare the performance of the model using 1
LSTM and 2 LSTM. Each model are trained for 300 epoch. At the end, we
choose the one with better performance to be implemented in the hardware.

Figure 14: Experimental setup
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Evaluation The evaluation metrics that we used are categorical crossentropy
for computing the loss and top-n categorical function for evaluating the ac-
curacy with n=3. The model choose top 3 proposed frames and match them
to the ground truth. Whenever the ground truth is contained in the proposed
frames, it means that the model predicts the output well. We choose top-
n categorical loss instead of just categorical loss as our evaluation metrics
because we consider that different people has different walking sequences.
Although we mentioned before that we found significant moments of walking
cycle every 4 frames, it is a general case but it may vary from person to per-
son, i.e. given the past walking labels as 1,2,3 and 4, it does not necessarily
that the next label would be 5 but could be 6 or even 7 because the less
remarkable difference in the frames between those significant moments.

Hardware Section After obtaining the model, we transferred the paramet-
ers into the hardware FPGA and tested on it. FPGAs are different regarding
hardware architecture which can be number of Look Up Table (LUT) , num-
ber of I/Os, clock frequency, pin packages and etc. Evaluation Board can be
varied based on the hardware components next to the FPGA such as DDR3,
Flash Memory, LAN, Artix is one of a well known FPGA family provided
by Xilinx. Every family is categorized among different series, every serie has
some particular features, 7 series FPGA provides some features like Multi-
boot and power efficiency which is not supported in earlier series. The Artix
7 FPGA has been chosen because of the low cost and enough time and power
efficiency for the target application. Figure 15 shows the hardware module
has been chosen.
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Figure 15: TE0712 including FPGA Artix-7

The TE0712-02 is an industrial-grade FPGA module integrating a Xil-
inx Artix-7 FPGA, a 10/100 Mbit Ethernet transceiver, 1 GByte of DDR3
SDRAM, 32 MByte Flash memory for configuration and operation, and
powerful switch-mode power supplies for all on-board voltages. A large num-
ber of configurable I/O’s is provided via rugged high-speed stacking strips.

FPGAs are capable to be program partially as soft processor unit. Soft
processors means part of FPGA will be programmed to work as a micro
controller which called Microblaze. Artix 7 supports Microblaze as soft pro-
cessing system. On the other hand, hard processors refer to those processors
which exist physically next to the FPGA on the evaluation board, On the
other words, A physical Microcontroller which mostly it is ARM cortex 8
or 9, works parallel with FPGAs. As we mentioned FPGAs are capable for
big matrix multiplication and arithmetic computation, Micro controller are
capable to be used as a co-processor to control the flow of data.

More efficiency can be gained by splitting the tasks between FPGA and
Controller. Controller will be processing unit system integrated Microblaze.
Microblaze will be connected to all hardware components on the evaluation
board. The connection is based on Master-Slave. Though the Microblaze is
master of all hardware components, it is slave of FPGA. The Architecture of
the controller will be like the following.
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Figure 16: FPGA Architecture

Microblaze is connected to 7 series Mig which it refers to DDR3 SDRAM,
Quad SPI refers to 4x channel connection with Flash memory, UART lite
refers to interface to communicate with FPGA and Microblaze through JTAG
connection. The rest of the components are generated by Xilinx Vivado which
are necessary to be added to Microblaze.

The instruction memory and data memory will be DDR3 SDRAM (1GB)
which is absolutely enough for weights and biases. Flash Memory will be
used as a space memory for Bootloader to boot the Microblaze and FPGA
both together. In this case FPGA will be exclusively used for matrix multi-
plications and activation functions.

Data Representation As we mentioned before, data memory will be DDR3
SDRAM. The DDR3 SDRAM structure is 32 bit * 32 M. All numbers we have
in our application are represented in Floating Point format. Furthermore,
floating point computation are usually high resources and time demanding.
Floating Point numbers must be represented in Q (Fixed Point) format on
FPGAs because there is no Floating Point Unit (FPU) on neither FPGAs
nor Microblaze. In Q (Fixed Point) is a fixed point number format where
the number of fractional bits and integer bits are specified. Q8:8, Q16:16
and Q32:32 represent number of bits for fraction and decimal. Furthermore,
floating point computation are usually high resources and time demanding.

We choose Q16:16 data representation as 32 bits Fixed Point to store a
number in a sector of DDR3 SDRAM. Q8:8 does not represent numbers as
precise as Q16:16 and Q32:32, Additionally, It may lead to overflow. On the
other hand Q32:32 will be too big for our application because there is no big
numbers with tiny fraction. Negative values will be represented by Two’s
Complement.

In order to convert the numbers to Q16:16, values must be multiply by
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216, then round up. The result will be represented as binary, the point is a
virtual point which exist only theoretically.

For example: 5.625 can be written as :
5.625 * 216 = 368640 = 000000000000000011.1010000000000000
-5.625 = Two’s Complement(5.625) = 111111111111111100.0110000000000000

Data Configuration All weight and biases will be stored in DDR3 SDRAM.
Based on the number of hidden layers and past sequences, amount of needed
memory will be calculated. Figure 17 shows overview of weights, biases,
input and output, generally all matrices and their dimensions where D and
H are number of inputs and outputs respectively. B is batch size which can
be set 1.

Figure 17: LSTM Matrix Overview
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All dimensions are mentioned in the following way :

it ∈ RB × RH

ft ∈ RB × RH

ct ∈ RB × RH

ot ∈ RB × RH

ht ∈ RB × RH

xt ∈ RB × RD

ht-1 ∈ RB × RH

ct-1 ∈ RB × RH

Wxi ∈ RD × RH

Wxf ∈ RD × RH

Wxo ∈ RD × RH

Whi ∈ RH × RH

Whf ∈ RH × RH

Who ∈ RH × RH

bi ∈ RB × RH

bf ∈ RB × RH

bc ∈ RB × RH

bo ∈ RB × RH

In our model, D is 8 and H is 32 so the whole amount of memory space
we need will be calculated like the following:

• Input data : xt = ND ×1 = 8
• Weights : Wxi, Wxf, Wxc, Wxo → ND ×NH (8× 32× 4 = 1024)

W hi,W hf,W hc,W ho → NH ×NH (32× 32× 4 = 4096)
• Biases : bi, bf, bc, bo → NH × 1 (32× 1× 4 = 128)
• Required memory space = 32 bits ×(8 + 1024 + 4096 + 128) = 164KB

Amount memory we needed to store the weights and biases is 164 KB
which is a small proportion of the entire DDR3 SDRAM.For small models
which need memory less than 128KB, weights and biases can be stored in
local memory of Microblaze which can be restored faster. The FPGA (Artix
7) will be connected to 12 RAMs which are synchronized by global clock
of FPGA. All matrices value will be stored into DDR3 SDRAM. Wxi, Wxf,
Wxc, Wxo,Whi, Whf, Whc, Who and bi, bf, bc, bo will be stored into nonvolatile
memory to be restored at every reset. Figure 6 demonstrates connection of
all weights and biases to FPGA unit. Though at every power on the board,
Microblaze will start to feed the FPGA by weights and biases parallelly.
Every entry of weights and biases will be transferred at one clock cycle. The
maximum clock cycle we need to read the weights and biases is size of the
biggest matrices which are Whi, Whf, Whc, Who with size of 32 x 32. So we
need around 1024 clock cycles after reset activation.

Hardware Implementation Based on LSTM formulas, computations can
be divided into metrics multiplications, matrics additions and activation
functions.

Matrix Multiplication has been implemented by generating 32 bits multi-
plier and adder to multiply the values and add them. 32 bits multiplier and
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adder has been used from IEEE.NUMERIC STD library. Figure 18 shows
the LSTM overview including the hardware functions,I/O and memories con-
nection.

Figure 18: LSTM Block Diagram

Sigmoid functions can be implemented using look up table (LUT) or step
function. Step function is not as accurate as look up table (LUT) method
because the Sigmoid and Tanh will be approximated by step function. Figure
19 shows the sigmoid and step function respectively. As it has been shown,
the step function is not precise approximation.
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(a) Sigmoid Function

(b) Step Function

Figure 19: Activation Functions

The other method is LUT using Piecewise Linear Approximation. Piece-
wise linear schemes use a series of linear segments to approximate a function.
The Tanh and Sigmoid function have been implemented using Piecewise Lin-
ear Approximation. Size of every segment is 0.1 in range of [-4 4] and the
average of upper bound and lower bound value of segment will be assign to
the Tanh and Sigmoid value for a particular segment. The calculated values
are converted to Q16:16 format and will be stored in registers of FPGA. Look
up tabel (LUT) architecture for Tanh is shown in Figure 20.

(a) Look Up Table Architecture

(b) Piecewise Linear Approximation

Figure 20: Activation Function Approximation
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Pipeline Pipelining is an implementation technique where multiple instruc-
tions are overlapped in execution. The computer pipeline is divided in stages.
Each stage completes a part of an instruction in parallel. Pipelining does not
decrease the time for individual instruction execution. Instead, it increases
instruction throughput. The throughput of the instruction pipeline is de-
termined by how often an instruction exits the pipeline. Pipeline technique
is implemented by embedding registers between stages, at every clock cycle
computation results are written in the registers. At next clock cycle new res-
ults have been written to the registers and previous results are shifted to the
next stage. The pipeline consists of 7 stages. Figure 21 shows the overview
of the pipeline.

Figure 21: Pipeline of LSTM

The blue rectangles are registers which are synchronized by global clock.
After all weights and biases are restored in internal memory of FPGA (1024
Clock Cycle), FPGA starts to compute.

The first stage of pipleline is keep the value of inputs and output of
previous step. The second stage of pipeline following computations are done:

(Whf * ht-1) (Whi * ht-1) (Who * ht-1) (Whc * ht-1)
(Wxf * ht-1) (Wxi * ht-1) (Wxo * ht-1) (Wxc * ht-1)

Third stage of pipleline :
(Whf * ht-1) + (Wxf * ht-1)
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(Whi * ht-1) + (Wxi * ht-1)
(Who * ht-1) + (Wxo * ht-1)
(Whc * ht-1) + (Wxc * ht-1)
The forth stage of pipeline is:
((Whf * ht-1) + (Wxf * ht-1) + bf)
((Whi * ht-1) + (Wxi * ht-1)+ bi)
((Who * ht-1) + (Wxo * ht-1)+ bo)
((Whc * ht-1) + (Wxc * ht-1)+ bc)
the fifth of pipeline is:
σ((Whf ∗ ht-1) + (Wxf ∗ ht-1) + bf)
σ((Whi ∗ ht-1) + (Wxi ∗ ht-1) + bi)
σ((Who ∗ ht-1) + (Wxo ∗ ht-1) + bo)
tanh((Whc ∗ ht-1) + (Wxc ∗ ht-1) + bc)
The sixth stage of pipeline is:
ft*Ct-1 + it*C’t
The seventh stage or last stage is:
ot*tanh(Ct)
After restoring the values of weight and biases from RAMs to FPGA, It

takes 7 clock cycles to fill the pipeline and actually after 7 clock cycle the
first output Ct and Ht have been computed.

We can calculate execution time by counting the clock cycles like the
following:

Weight and biases transferring takes 1024 clock cycle Clock stability usu-
ally takes 20 to 30 clock cycles. Computation for 196 sample takes (196+7)-1
clock cycle because the first 7 samples fill the pipeline. It can be formulated
generally as:

(H ∗H) +ResetStabilityT ime+ (T − S) + 1) (7)

where H is number of hidden layers, T is number of the testing sample and
S is number of the pipeline stage. So in this model Total clock cycle is:

(32x32) + 25 + (196 + 7)− 1 = 1251 (8)

The clock cycle depends on oscillator connected to FPGA and Microblaze.
Clock frequency is 100 MHz so the clock cycle is 10 ns. Result of the first
sample is computed within 1056 clock cycle, after this point computation
of every sample takes 1 clock cycle. All in all the whole test phase for 196
samples takes 12.5 µs.
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5 Results

In terms of accuracy and loss of the training model, the results show that
using 2 LSTM has better performance than using only 1 LSTM. This happens
because using 2 LSTM allows the model to retain memory better and also
have more complex model without having to suffer overfitting the dataset.

Figure 22: Training and Validation Loss graph

From the loss graph, it can be inferred that the performance of 2-LSTM
model is much better than 1-LSTM model. The loss of 1-LSTM model con-
verges to around 1.2, whereas the loss of 2-LSTM model can reach slightly
lower than 0.5. The evidence can also be seen in the validation loss graph
where 2-LSTM model can outperform 1-LSTM model.

Figure 23: Training and Validation accuracy graph

In the accuracy graph, it can be seen that the performance of 2-LSTM
model outperforms 1-LSTM model in both training and validation dataset.
In the training dataset, the model with 2-LSTM can reach the accuracy of
98%, while the model with 1-LSTM can reach only 90%. Whereas in the
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validation dataset, the model with 2-LSTM can reach up to 96% of accuracy,
while the model with 1-LSTM can achieve slightly below 90% of accuracy.

Figure 24 shows the experimental result using Vivado 2018.2 Simulation
Environment.

Figure 24: Simulation Result

We also tried implementing the model on GPU as well as on CPU. The
GPU used here is NVIDIA 940MX with clock cycle of 954 - 993 MHz, whereas
the CPU specification is Intel Core i5 with clock cycle of 2.9 GHz. The results
show that GPU took 88 µs to make an inference, while CPU needed 1019 µs
to infer from the testing dataset.

The model was also tested on Google Colaboratory GPU to check its
performance. The configuration of GPU was 1xTesla K80 having 2496 CUDA
cores , 12GB GDDR5 VRAM whereas CPU was a single core hyper threaded
Xeon Processors 2.3GHz i.e(1 core, 2 threads). The RAM was 12.6GB and
Disk space available was 320GB. Figure 25 shows comparison of execution
time of Artix 7 with other hardware platforms.
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Figure 25: Execution time comparison

The relationship between power and frequency is inversely proportional
to each other. On the other words, whenever frequency has been increased,
power consumption is increased. Frequency and power supply voltage are
two reliable parameters to estimate power consumption. Figure 26 shows
frequency comparison of different platforms.

Figure 26: Frequency comparison

25



6 Conclusion

Recurrent Neural Networks (RNN) have gained popularity recently in many
applications such as time series forecasting, Long Short Term Memory is one
of the famous RNN architecture. This research has focused on pedestrian
motion prediction which is a part of Autonomous Driving applications. We
have considered sequence of frames which is corresponding to movements as
a time series problem because based on our study the sequence of pedestrian
motion has almost a unique pattern in every 25 frames so the movements
can be classified in 25 classes and can be predicted using LSTM architec-
ture. LSTM is able to predict the next frame of pedestrian motion. A model
including one LSTM has been trained and tested with 90 % accuracy. Fur-
thermore, Autonomous Driver must make a decision quickly and accurately.
In fact, Autonomous driver is a real time application which time is a crucial
issue. We have introduced FPGA as an hardware platform which is more effi-
cient regarding time and power compared to other hardware platform such as
CPU and GPU. We have implemented LSTM on TE0712 which is an evalu-
ation board consisting Artix 7 FPGA family. Our evaluation of implemented
LSTM using FPGA shows that it can offer superior performance regarding
time and power consumption. All experimental results show the capabil-
ity of FPGAs to reduce computation time in test phase compared to other
hardware platforms such as CPUs and GPUs. All in all, Autonomous driv-
ing application must be implemented on embedded systems to be released
as a real production, FPGAs are the most populated hardware platform for
embedded systems.

7 Future Work

In the future work there are several directions. First of all, we can enrich
our dataset with different pedestrian motions because in this project only
the people with general walking cycle has been considered. This idea can
be implemented on more powerful FPGA such as Aria 10 provided by Intel
or Ultrascale+ MPSoC provided by Xilinx to gain more time efficiency due
to high frequency supported by Aria 10 or Ultrascale+ MPSoC. The power
consumption can be measured precisely using the circuit analysis tools, In
this project we have estimated the power consumption using the clock fre-
quency which is a considerable parameter in power consumption but it is not
as accurate as measured power consumption. Gated Recurrent Unit (GRU)
as a well known RNN architecture can be implemented and tested with same
perspective and idea to gain more time and power efficiency.
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